Step of Proof: before_last
11,40
postcript
pdf
Inference at
*
2
1
3
I
of proof for Lemma
before
last
:
.....rewrite subgoal..... NILNIL
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
x
:
T
. (
x
v
)
(
(
x
= last(
v
)))
x
before last(
v
)
v
6.
x
:
T
7. (
x
v
)
8.
(
x
= last([
u
/
v
]))
(
null(
v
))
latex
by ((((((((D 0)
CollapseTHEN (RW assert_pushdownC (-1)))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
C(
CollapseTHEN (HypSubst (-1) (-3)))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
7. (
x
[])
C1:
8.
(
x
= last([
u
/
v
]))
C1:
9.
v
= []
C1:
False
C
.
Definitions
t
T
,
A
,
P
Q
,
P
&
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
null
wf
,
assert
wf
,
l
member
wf
,
assert
of
null
origin